Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients

نویسندگان

  • Fabio S Aguiar
  • Luciana L Almeida
  • Antonio Ruffino-Netto
  • Afranio Lineu Kritski
  • Fernanda CQ Mello
  • Guilherme L Werneck
چکیده

BACKGROUND Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. METHODS Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. RESULTS We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. CONCLUSIONS The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعیین الگوی توزیع مکانی فلز روی در خاک سطحی استان همدان با استفاده از مدل طبقه‌بندی و رگرسیون درختی

Physicochemical characteristics of soil, land cover/use and human activities have effects on heavy metals distribution. In this study, we applied Classification and Regression Tree model (CART) to predict the spatial distribution of zinc in surface soil of Hamadan province under Geographic Information System environment. Two approaches were used to build the model. In the first approach, 10% ...

متن کامل

Comparing the Results of Logistic Regression Model and Classification and Regression Tree Analysis in Determining Prognostic Factors for Coronary Artery Disease in Mashhad, Iran

Background and purpose: Understanding of the risk factors for cardiovascular artery disease, which is the leading cause of death worldwide, can lead to essential changes in its etiology, prevalence, and treatment. The aim of this study was to compare the results of logistic regression model and Classification and Regression Tree Analysis (CART) in determining the prognostic factors for coronary...

متن کامل

تعیین عوامل خطرزا و ارایه مدل پیش‌آگهی آمبولی ریه بیماران بستری با استفاده از شبکه‌های بیزی

Background and Objectives: Pulmonary embolism is a potentially fatal and prevalent event that has led to a gradual increase in the number of hospitalizations in recent years. For this reason, it is one of the most challenging diseases for physicians. The main purpose of this paper was to report a research project to compare different data mining algorithms to select the most accurate model for ...

متن کامل

استفاده از مدل رده‌بندی درختی برای تعیین عوامل مؤثر بر مرگ‌ومیر پس از عمل جراحی کرونری بای‌پاس در بیماران غیر وابسته به دیالیز

 Background and Objective: Coronary artery disease is one of the most prevalent causes of death. A coronary artery bypass surgery is a common treatment for this disease. In addition, renal dysfunction can lead to increased mortality and post-operative complications. This study aimed to identify the most important factors influencing the mortality of patients who suffer from coronary ar...

متن کامل

Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012